Sensitivity Analysis of POMDP Value Functions

ثبت نشده
چکیده

In sequential decision making under uncertainty, as in many other modeling endeavors, researchers observe a dynamical system and collect data measuring its behavior over time. These data are often used to build models that explain relationships between the measured variables, and are eventually used for planning and control purposes. However, these measurements can not always be exact, systems can change over time, and discovering these facts or fixing these problems is not always feasible. Therefore it is important to formally describe the degree to which the model can tolerate noise, in order to keep near optimal behavior. The problem of finding tolerance bounds has been the focus of many studies for Markov Decision Processes (MDPs) due to their usefulness in practice. In this paper, we consider Partially Observable MDPs (POMDPs), which is a more realistic extension of MDPs with a wider scope of applications. We address two types of perturbations in POMDP transition function parameters, namely additive and multiplicative, and provide theoretical bounds for the impact of these changes in the value function. Experimental examples are provided to illustrate our analysis in practice. In particular, we apply these results to a practical application of decision making in biosurveillance systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robot Planning in Partially Observable Continuous Domains

We present a value iteration algorithm for learning to act in Partially Observable Markov Decision Processes (POMDPs) with continuous state spaces. Mainstream POMDP research focuses on the discrete case and this complicates its application to, e.g., robotic problems that are naturally modeled using continuous state spaces. The main difficulty in defining a (belief-based) POMDP in a continuous s...

متن کامل

Risk-sensitive planning in partially observable environments

Partially Observable Markov Decision Process (POMDP) is a popular framework for planning under uncertainty in partially observable domains. Yet, the POMDP model is riskneutral in that it assumes that the agent is maximizing the expected reward of its actions. In contrast, in domains like financial planning, it is often required that the agent decisions are risk-sensitive (maximize the utility o...

متن کامل

Value Engineering and AHP Analysis of Intelligent Metering in Iran's Electricity Grid

This paper aims to analyze the implementation of smart meters implementation based on the value engineering integration approach and the AHP hierarchical ranking method. Value engineering strives to identify unnecessary functions by identifying product or project functions and by removing them to focus on other ways that they can fulfill the essential functions. To this end, in this study, firs...

متن کامل

Risk-Sensitive Planning in Partially Observable Environments

Partially Observable Markov Decision Process (POMDP) is a popular framework for planning under uncertainty in partially observable domains. Yet, the POMDP model is riskneutral in that it assumes that the agent is maximizing the expected reward of its actions. In contrast, in domains like financial planning, it is often required that the agent decisions are risk-sensitive (maximize the utility o...

متن کامل

Exploiting submodular value functions for scaling up active perception

In active perception tasks, an agent aims to select sensory actions that reduce its uncertainty about one or more hidden variables. For example, a mobile robot takes sensory actions to efficiently navigate in a new environment. While partially observable Markov decision processes (POMDPs) provide a natural model for such problems, reward functions that directly penalize uncertainty in the agent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008